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The thermodynamic t rea tment  of double-pseudobinary 
solutions of the type  (AxBy)ro(MuNv)so presented in a preceding 
publication was extended to include the conditions defining the 
critical points for the asymmetric  case (r0 r so) and approxi- 
mations for the spinodal and binodal surface near the critical 
solution point. 

Closed solutions for the coordinates of the eritieal points 
were obtained only for systems with ideal mixing behavior, 
and the isothermal binodM and spinodal near the critical 
solution point  in such systems are adequately approximated 
by  circles and ellipses, respectively. An axes ratio of V g is 
nearly independent of the relative sublatt ice abundance and 

the major  effect of changes in the ratio So is a rotat ion of the 

V~ ~0 binodal by an angle tg e = ~ .  

The principal features of nonideal regular systems for 
temperatures  close to the critical solution point  are deseribed by  
expressions derived from small term expansions of the con- 
ditionM equations, but  generMizations are not  possible to the 
same extent  as for the ease with ideal boundary systems. 
The results are discussed and the applicat ion of the equations 
demonstrated on model examples. 

I n t r o d u c t i o n  

I n  a preceding publ ica t ion  1 the  s t ab i l i ty  condit ions,  as well as the  
equat ions  descr ibing the  b i~oda l  and  sp inodal  surfaces in double-  
pseudobi t la ry  solid solut ions (A~By)ro(MuNv)so were der ived  and  the  
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symmetrical case, characterized by equM abundance of the two sub- 
lattices (r0 = so = 1), discussed in greater detail. In particular, it was 
demonstrated, that  critical phenomena in such systems can be induced 
by proper choice of the Stabilities of the binary boundary phases and 
thus are not by necessity bound to rmnideM mixing behavior. The close 
formal relationships between the binary regular solution model and the 
formulation for the double pseudobinary solution with ideal mixing 
behavior, in which the role of the interaction coefficient is taken by the 
free energy difference 

AA Gf : n ~f, AtoMs 0 @ A ~f, Br0N80 - -  A ~f, Ar0N~ 0 - -  A Gf, Br0Ms0, 

is noteworthy, particularly in view of the fact, that  the regular solution 
appears as the zeroth order approximation of a statistical model limited 
to only nearest neighbor interactions ~. The double-pseudobinary solution 
thus appears to be an ideal model case for examining the statistical 
approach and we hope to report on this subject at a later date. 

Our primary concern in the discussion here will be to extend the 
thermodyllamie treatment to include the asymmetric (to # so) case of 
the double-pseudobinary solid solution, to obtain additional relations 
characterizing the critical points in such systems, and to derive useful 
approximations for the description of the phase phenomena in the 
vicinity of the eritieM solution point. 

I. C o n d i t i o n s  fo r  t h e  C r i t i c a l  P o i n t  

Consider the double-pseudobinary solid solution 

(A~B~,)ro (MuNv)~o 

with the integral free energy 

G ~ r 0 ( X ~ A  -~ Y~B) @ 80 ( ~ M  @ V~N), 

~ = thermodynamic potential of component i. 

Noting the form of the derivatives, 

--- r0 (~A - -  ~z )  
~ x .  
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we define thermodynamic potentials f2 and 0 by Legendre transformation 
of G according to (T, p == const): 

O(x,~M--~)----G--u ~ . 

Since 

and 

( o a t = 

OX~/~M_~ v G~,~ ' 

the condition for stability in terms of the transformed functions is now 
specified by 

and 

Considering that  

(~-~)V~A_LZ B ~ (~LM--~LN) 

(~!)~.M_~. N = (~LA- [s 

we observe, that  the system will always be stable if (y.M - -  ~N)~.A-~ B and 

( ~LA - -  [s ~s - -  ~s increase monotonically with u and x, resp. Conversely, 
unstable states are characterized by monotonically decreasing functions 
[~M - -  ~2V] (u) and [~A - -  ~B] (X), and the boundary between stable and 
unstable states (spinodal) are characterized by the extrema of these 
functions, i.e. 

~ ;  /gtA--lz B = \~U2/II.A__IZ B - -  

~X tXM_tXN = ~OX2/tXA_V.B 

On) 

( lb)  
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The transition between stable and unstable states at  the critical solution 
point is thus marked by  an inflection point and we obtain as additional 
condition (T, p ---- eonst): 

Conditions (1) and (2) are sufficient to define the critical points of the 
system. 

The third derivatives of ~ and 0 in terms of the derivatives of the 
free energy G ~re given by 

2 

In  order to apply equations (1) and (2), it is necessary to express G in 
terms of the independent thermodynamic parameters  of the system. 
For the description we choose the regular solution model with two 
independent interaction coefficients ~M and ~ for the two sublattiees 
(A, B) and (M, N), resp. 1. The ideal ease is then given by  SM = ~ = 0. 
With these assumptions, the integral free energy of the solid solution 
system becomes 

a = x~G~ ~- yUa~ -~ xvGOroNso -~ yVaBroNso -~ am ix, 

R T  --  r~ ~ xy ~- x ln x + y ln y ~-s0 ~l ~ uv + u |n u -~ v l n v  , 

with the derivatives 

G ~  = RTro - -  2 CM + x- 

G~x~ = RTro - - x ~  + 

Gxxu = Guux = 0 

Gzu ----- AA G I 

( Guu = RTso - -  2 ~ + u 
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Since the mixed derivatives Gxxu and Guux are zero, conditions (3 a) and 
(3 b) for the critical point reduce to : 

and 

Substitution of the derivatives of G into the above expressions and 
rearrangement of the terms results in the relations: 

x - -y  (1 r o s o 2 ( ~ )  1 

\ 

2~,uvl~ [AAGFI  3 
RT I = \-~-T~I 

2eMXytS ( AAGFt 3 

Combining both equations and substituting the pseudobinary critical 
temperatures for the interaction coefficients, 

~ M  = 2 RTcl ; ~ ---- 2 RTc2, 

and further introducing the reduced temperatures 

T .  ~ 2 : T  

we obtain the equation in its final form : 

( r0 ~ 1 T1 / s 0 ( u ~  t ~ ] (5) 

Relation (5), together with the spinodal calculated from (1): 

xy 4 ~v ~ 
(6) 

1 
A ~  o~ = 4 RTc3 Vr~0; T3 = Tc~' 

define the coordinates of the critical points of the regular double-pseudo- 
binary solid solution (AxBy)r o (Mu_~v)s o at the temperature T. 

For calculation purposes, but especially for carrying out small term 
expansions for approximations, it is convenient to shift the origin of the 
concentration coordinates to the center of the composition quadrangle. 
We substitute: 

1 1 x = ~ + s ;  u = ~ + t ,  
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and  condit ionM equat ions  (5) and  (6), r ewr i t t en  in the  new coordinates  
s and t, become then :  

ro{l--4s~t s2 ] l~--4s~:-t3=So[1--4t21(l~ ] ~---~---, 1--4t2t~-~ ] ,7) 
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Fig. i .  Plot  of the  function : 

xy ( 4 x y t ~ = s  ~ uv ( l__4uv t~  

(,0) for different pa ramete r  values z = ~o 

I I .  C a l c u l a t i o n  o f  t h e  C o o r d i n a t e s  o f  t h e  C r i t i c a l  P o i n t s  
a n d  A p p r o x i m a t e  S o l u t i o n s  f o r  t h e  B i n o d a l  a n d  S p i n o d a l  

n e a r  t h e  C r i t i c a l  S o l u t i o n  P o i n t  

A. Ideal Boundary Systems 

F o r  this  pa r t i cu la r  case we have  

Tcl -~ Tc2 = 0 and  Tca ~ Tc. 
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Fig.  2. B inoda l  and  spinodal  curves  for the  ideal  symmetr ic ,  ro = so, 
double -pseudobi l lary  sol id so lut ion;  (a) T = 0 .90;  (b) T = 0.64 
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Because condition (7) does not contain any other variables but the 
concentrations and the sublatticc abundance factors so and ro, and can 
be presented in the form 

.R x,u, = 0 ,  

the critical points are conveniently located graphically as the inter- 
section points of parametric plots of condition (7), Fig. 1, with the 

spinodal at the desired value of ~ Since the shape of the spinodal 
remains unaffected by the sublattice abundance factors and is roughly 
circular at temperatures not too far from the critical solution point, the 

80 principal effect of variations in z = -  is a partial revolution of the 
r 0  

binodal around the (fixed) binodal. This behavior is shown in graphs 2 
through 4 for values of z of 1, 3, and 12. The spinodals for these examples 
were calculated using equation (8), and the binodals from the relations1: 

~ X r 
ro l n ~ . ~ ,  (9a) 

U tt V '  
( x ' - - x " ) = T  so In - - . - -  (9b) 

4 W~'080 Ve~ Ur 

y,, v,, 1 r0 In --  so In v~] - (9 c) (~"~" - x ' ~ ' )  = 4 l/~o~-~ Y' + 

Examining the boundaries in Fig. 2 through 4, it will be noted that  the 
principal dimensions of the binodal near the critical solution point are 
also largely unaffected by the choice of z and are roughly elliptical in 
shape. 

Solving equations (7) and (8) for t and s yields the coordinates 
of the critical points: 

8 2 2 r o - - ( ~ 0  s0) T Z [ l _ _ ~ / / 1 _  4r~ (1 - -  T2) ] (10a) 

[(to - -  So) ~2 __ 2 to] 2 

= ~ . . . . . . . . .  O O b )  
s so [(so - -  r0) T 2  - -  2 so]  ~ 

From a small term expansion of (10 a) and (10 b) for the vicinity of the 

~Ionatshef te  ffir Chemic,  Bd. 104/5 75 
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critical solution point we immediately get the next lower approximation 

= 4 \ g0 + so/ ~ ~-o-4%0/ 

Table 1. Comparison between the Exact Location o] the Critical Points (equa- 
tion 10) and Coordinates Obtained ]rom the Zeroth Order Approximation (12) 

at T ~ 0.90 

s (• 
From 

z Exact Exact Approx. (12) 

t (:~) 
From 

Approx. (12) 

2 0.132 0.126 0.180 0.178 
3 0.115 0.109 0.190 0.189 

12 0.066 0.063 0.210 0.209 

or, discarding the first order temperature correction terms in the square 
brackets, the zeroth order approximation: 

4 ~ro + so/ 

t~ - 1  ( 80 I ( 1 - - ~ 2 ) .  

(12a) 

(12b) 

between the exact coordinates of the critical points The agreement 
calculated from relations (10) and those determined from the zeroth 

order approximation (12) for T ~ 0.90 is quite good, as evidenced, by the 
data presented in Table 1. The slope of the critical tie lines, obtained as 

Fig. 3. Binodal and spinodal curves /or an ideal asymmetric double-pseu- 
dobinary solid solution with 

~ =  ~ = 3  (a) ~ = 0 . 9 0  (b) T = 0 . 6 ~  
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slope of the binodal at  the critical points, and the slope of the line 
through both critical points (minor axis) are given by: 

(a,) 
S = ~ p . =  ~yyp.-~ Vsok g\ro+Sol 

-I ] S' t l/s~ 1 §  r o - s ~  
= s ~ v r 0  [ 2 \ ~ - 0  ~ 0 ]  (1 - -  T~)  . (14) 

The first order temperature correction terms contained in the square 
brackets of (13) and (14) are small at  temperatures close to Tc and can be 
neglected for approximate calculations. We thus find the critical tie lines 
to be roughly perpendicular to the line connecting the critical points. 

From the binodal (9) we turther obtain for the end points of the tie 
line through the symmetry  center s, t (0,0) the approximations 

80 t - 

s l  • • ~ - / / I r o - ~ ]  (1 - - Z  2) (15a) 

t l  ~ =F 2 ~/ Ir-~_~o] (1 - - T  2) (15b) 

and from these coordinates the slope of the major axis: 

S1 = Sl - -  

In  the limit, the major axis has thus the same slope as the critical tie 
lines. 

Table 2 gives a comparison between the exact vMues of the co- 
ordinates and those calculated with the aid of approximations (15) for 
z = 2, 3, and 12. As can be seen from the data, agreement between the 
exact and calculated values is not as good as in the approximation for the 
critical points, but  still satisfactory. In  particular, equations (15) 
predict major axes which are systematically too long and a closer 
approximation would therefore have to include higher order terms in the 
expansion of the equation for the binodal. 

Fig. 4. BinodM and spinodal curves for an ideal asymmetric doublc-pseu- 
dobinary solid solution with 

('~ z =  too = 12 (a) T ~ 0 .90 (b) T =  0.64 



ANt z 
I 0 0  \ \ .  

\ .  
\ 

\ 
l , \ ,  

80 \ 
I-- ' \  

T = 0.90 TC 
i i 

BN~z 
' / / '  

. /  
/ 

/ 
/ 

, /  
/ 

Z 

0 

l.d 
n 
0 60 

s 

Z 40 
"r- 

X L~ 
i 

Z 

0 

AMi2 

"-, P'cJ / 
- ,/.- 

/ / 

/ "  

/ 

/ 

' ~ ' 4~  ' 6'0 ' 
- -  B-EXCHANGE, ATOMIC PERCENT ----~ 

\ � 9  
\. 

\ ,  
\, 
\ 
\ 

i 

dO I00 

BMI 2 

Fig.  4 

AN~z 
I00 

T 8O 
I-- 
Z 
I.d 
(J 
n,- 
ILl 
13.. 

~ 6 0  

0 
I-- 

Z 40 

I z j  
X 
Ld 

i 
Z 

f 20 
I 

T= 0 , 6 4  Tc 

0 

AM~2 

BN~z 
i i , 

�9 /" 

/ , / / ~  
/ N 

/ \ 
| , I , , , \ 

do 4o ~'o 8'o ,oo 
-- B-EXCHANGE, ATOMIC PERCENT ~ BMI@ 

Fig. 4 b 



1176 E. Rudy  et al. : Boundary Phase Stability and Critical Phenomena 

F r o m  relations (12) and (15) we obtain  for the dimensions of the 
minor  and major  axis 

d2minor : (1 __T2)  

d 2 . m~o~ = a (1 - - ~ ) .  

A near ly  constant  axes rat io  of ~ V 3  is thus  in agreement  with the 
qual i ta t ive inspection of the boundaries  in Figs. (2 a), (3 a), and  (4 a). 

Table 2. Comparison between the Exact Coordinates o] the Tie Line through 
s, t, (0.0) and Values Calculated ~rom the Zeroth Approximation (15) at 

T ~ 0.90 Tc 

sl (~) 
From 

z Exact  Exact  Approx. (15) 

ti (:F) 
From 

Approx. (15) 

2 0.297 0.308 0.218 0.218 
3 0.312 0.327 0.190 0.189 

12 0.338 0.363 0.107 0.105 

The approx imate  equat ions for the spinodal and  binodal a t  t empera tu res  
not  too far  f rom the critical solution point  are then:  

42 Jr B ~ ( 1  __fi2) . . . . .  spinodal (17) 

4 2 1 
~- ~ ~ ~- (1 - -  T~) . . . . .  binodal.  (18) 

The  new rectangular  coordinate sys tem (4, ~) is obta ined by  ro ta t ion  of 

the  coordinate sys tem (s , t )  b y a n a n g l e ~ g i v e n b y t g ~ = V ~ . A  p- 

Fig. 5. Approximated (broken lines) binodMs and spinodals of ideal double- 
pseudobinary solid solutions at T = 0.90 To. Solid lines show exact bound- 
aries. Approximate solutions : 

spinodal:  ~2 -F ~u = ~ (1 __~2) 

P tg  ~ =  
Binodal: ~ - ~ 2 = l ( l - - T  2) 

(a) z = 1; (b) z - - 1 2  
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proximations calculated from (17) and (18) for two different ratios r00 ' 

together with computer-calculated, exact, boundaries are depicted in 
Figs. (5 a) and (5 b), 

]3. Nonideal Boundary Systems 

In view of the involved arithmetic, it proved impractical to carry the 
approximations for the nonideal case beyond that  of zeroth order; the 
only exception being the slope of the critical tie lines, for which more 
tractable expressions could be developed. 

Approximate solution of equations (7) and (8) by small term expan- 

sion (1 - -  T, s, t 4 1) yields the coordinates of the critical points: 

4 r0 (1 - - T l l )  2 + 80 (1--T'21) 2 

1 so (1 _ _ ~ l ) a  
t 2 ~___. 4 r0 (t --T71) ~ + so (1 - -  ~ ) ~  [1 - - ~ ( 1  - - ~ i  ~) (1 - -~ i~ ) ] ,  (i9b) 

from which we immediately obtain the slope of the line through the 
critical points to : 

s V,o " (20) 

Small terms expansion and differentiation of the regular binodal 1 yields 
for the slope at the critical point: 

() () S=~odt = aY~od~ ~-- .\VZ_~I (I+K) (~1) 

in which the first order correction term K is given by 

K ---~ I- [r0 (i ----Tll) 2 - -  6o (i --T~I) 2] [1 - -  (l - -  f~l 1) (I __~1) ~2] 

For T1-1, ~'2 -1 -~ 0, and Ta -~ T (ideal solution), expression (21) becomes 

Fig. 6. Binodal and spinodal lines of a regular asymmetric, double-pseu- 
dobinary solid solution (z ~ 12), calculated with Tel = - - T c ,  ~-Tr 3. 

(a) T~--0.90; (b) T = 0 . 6 4  
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identical with (13). From the binodal we also calculate the slope of the 
tie line through the symmetry center s, t (0,0) to: 

$1 ---- t l  = r0 

Comparison of (20), (21), and (22) reveals that, in the lowest order 
approximation, the critical tie line is parallel to the tie line through 
s, t (0,0), but that  the principal axes are not perpendicular to each other 

if T1 and ~ are dissimilar. The effect of nonideal behavior is shown on 

partieuI~r model examples for~" ~- 0.90 and 0.64 in Figs. 6 a and 6 b, which 
were calculated assuming regular solution behavior of the boundary 
systems and critical temperatures of Tcl ~ - -Tc~  ~ Tc3. The critical 
solution temperature, needed for the calculation of the reduced tempera- 
tures, was derived from the relation ~, 

Tc -- Tel ~ To2 1 
2 

D i s c u s s i o n  

The foregoing thermodynamic treatment permits several generali- 
zations concerning the phase equilibrium features of double-pseudo- 
binary solid solutions: 

First, we find that  phase separation in solid solutions with ideal, or 
weakly nonideal, boundary systems is principally controlled by the 
stability of the boundary phases. Although the relative abundance of the 
sublattices does affect critical solution temperature and orientation of 
the binodal and tie lines, its influence on extent and shape of the mis- 
cibility gap at equivalent temperatures is only minor. Unequal sub- 
lattice abundance (r0 ~ s0) and nonideal sublattice solid solution 
behavior causes a slanting of the tie lines in the direction of the boundary 
systems with the higher sublattiee weight factors and less positive 
deviations from ideality~ A point of practical interest concerns the 
prediction that  the mutual solubilities are higher in the less stable 
boundary phase pair, and that  the solubilities along the composition line 
connecting: the higher stability boundary phase pair are expected to be 

very small below T = 0.5. 
Although the conditional equations for the critical point derived in 

Section I have general validity, the particular nonideal solution model 
chosen for the description of the model examples has principal limitations: 
An example is the breakdown of the model for AA G/-~ 0, since under 
these circumstances the critical solution temperature would be given by 
either Tcl, or To2, whichever is higher, and the solution at Tc would 
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become critical along the entire concentration line x -- 1/2, or u = 1/2. 
For the thermodynamic description of double-pseudobinary solid 
solutions with substantial, and dissimilar, nonideal behavior of the 
boundary systems, a four-parameter 1 equation for the regular solution, 

Gmix m ~1 u x y  -~ ~'2 v x y  ~- ~3 xuv  -~ ~4 yuv  -~ Gmix( ideaD 

should provide a more reasonable approximation of the actual conditions. 
The interaction parameters zi can be estimated from the miscibility gaps 
in the corresponding pseudobinary boundary systems, or from the 
measured tie lhne distributions in pseudoternary systems with miscibility 
gaps ~ . 

While it will not prove difficult to assess the applicability of the 
equations developed in this paper to solid solutions based on simple 
ordered structures, careful consideration has to be given to eases where 
intermixing occurs simultaneously on several non-equivalent crystal 
sites occupied by the same set of components, say (A, B), or where the 
occupational interchange between the two sublattices is substantial. 
To exemplify the situation, we consider a solid solution 

(A~Zy)z(M, •), 

in which the components A and B are distributed among n nonequivalent 
crystal sites: z~ equivalent sites 1, ze sites 2, . . .  e~e., with ~]zi ~ z .  

n 

Uniform distribution of A and B on the different sublattice sites will 
only be assured if they are all energetically equivalent with respect to 
occupation by A and B. If this is not the case, we have to consider the 
formation of internal partition equilibria of the form 

(Ax 'By ' ) z l  - -  (Ax~Bv")~  - - .  �9  

and analyze the composition of each sublattice in order to be able to 
describe the integral free energy of the system. At least in principle, 
coexisting sublattice compositions (tie lines of the homogeneous partition 
equilibrium) can be determined by diffraction techniques and thermo- 
dynamically evaluated using essentially the same methods as for hetero- 
geneous phase equilibria 4. For the limiting case of large energy separations 
(strongly preferential occupation of the sublattice sites), the system is 
divided into n subsystems, e.g. 

(Az ,  By,)z  1 A z  2, A z  3 . . .  A z  n (M,  IV) 0 <<, YB <, zA 
75 

Bz 1 (Ax,, Bu,,)z2 Aza .  �9 A %  (M,  N )  z l <~ yB <<, z l_+ Z ~ . . .  etc. 
Z Z 

each of which may have a critical point and closed loop binodals. 
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