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The thermodynamic treatment of double-pseudobinary
solutions of the type (A zBy)ry(M uNy)s, presented in a preceding
publication was extended to include the conditions defining the
critical points for the asymmetric case (r¢ % s¢) and approxi-
mations for the spinodal and binodal surface near the critical
solution point.

Closed solutions for the coordinates of the critical points
were obtained only for systems with ideal mixing behavior,
and the isothermal binodal and spinodal near the critical
solution point in such systems are adequately approximated

by circles and ellipses, respectively. An axes ratio of V3 is
nearly independent of the relative sublattice abundance and

the major effect of changes in the ratio %0 is a rotation of the
— 7o
binodal by an angle tg « = -;—0—.
(]

The principal features of nonideal regular systems for
temperatures close to the eritical solution point are described by
expressions derived from small term expansions of the con-
ditional equations, but generalizations are not possible to the
same extent as for the case with ideal boundary systems.
The results are discussed and the application of the equations

demonstrated on model examples.

Introduction

In a preceding publication! the stability conditions, as well as the
equations describing the binodal and spinodal surfaces in double-
pseudobinary solid solutions (A4zBy)ro(MulNv)se Were derived and the
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symmetrical case, characterized by equal abundance of the two sub-
lattices (ro == sp = 1), discussed in greater detail. In particular, it was
demonstrated, that critical phenomena in such systems can be induced
by proper choice of the stabilities of the binary boundary phases and
thus are not by necessity bound to nonideal mixing behavior. The close
formal relationships between the binary regular solution model and the
formulation for the double pseudobinary solution with ideal mixing
behavior, in which the role of the interaction coefficient is taken by the
free energy difference

AA Gy = A Gy, Apg Mg A Gy, BrgNgy ™ A Gy, Ay Ngo ™ A Gy, By Mgy
is noteworthy, particularly in view of the fact, that the regular solution
appears as the zeroth order approximation of a statistical model limited
to only nearest neighbor interactions?. The double-pseudobinary solution
thus appears to be an ideal model case for examining the statistical
approach and we hope to report on this subject at a later date.

Our primary concern in the discussion here will be to extend the
thermodynamic treatment to include the asymmetric (rg % sg) case of
the double-pseudobinary solid solution, to obtain additional relations
characterizing the critical points in such systems, and to derive useful
approximations for the description of the phase phenomena in the
vicinity of the critical solution point.

I. Conditions for the Critical Point

Consider the double-pseudobinary solid solution
(AzBy)ry (MuNv)s,

with the integral free energy

G = 7o (#pa + yus) + so (wpy + vun),

us = thermodynamic potential of component <.

Noting the form of the derivatives,
96y
¥ 7o (ta — Wtn)

(86‘ _
2 x-—SO(lJ»M‘_P-N),
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we define thermodynamic potentials Q and 0 by Legendre transformation
of @ according to (7', p = const):

oG
Q(u, pg—up) =G—z (%)u

0 (@, pm—pw) = G~u(aa)

Tuly
Since
(ajg) __ G Gy — (Ozu)?
0 u? vg-ug Gy
and
(gz_e) _ Oz Guu— (Ga)?
Jx? byt Guy

the condition for stability in terms of the transformed functions is now

specified by
2 2
(é—g) > 0 and (?_6) = 0.

2
au bg—bp

Considering that

oQ
M = (y — N)
Ty
and
(Z—g) = (ta— pB)

UM TUN

we observe, that the system will always be stable if (war — pv)p—upand

(.4 — wB) b — P increase monotonically with « and x, resp. Conversely,
unstable states are characterized by monotonically decreasing functions
[ear — pnl () and [pa — w8l (#), and the boundary between stable and
unstable states (spinodal) are characterized by the extrema of these

functions, i.e.
020
= (; 2) =0 (1a)
_ JU b4-Up

9 (s — w5) _ (@20 _
(T)WW“ (5—) =0 (v)

Hg—HtB

(a (e — um)
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The transition between stable and unstable states at the eritical solution
point is thus marked by an inflection point and we obtain as additional
condition (7', p = const):

53 3
(0 ?) =0 and (2 2) = (. (2)
du hg-tp up—uy

Conditions (1) and (2) are sufficient to define the critical points of the

system.
The third derivatives of Q and 0 in terms of the derivatives of the
free energy ¢ are given by

220 @ Gou\® Gru\?
p— = GQuuuw— 3 Quys o + 3Gusz ) — Gros 2 (3a)
oudl Gz

b4~ KRB

Ga;x G!E:t

239 ¢ Gou |* Gau |’
L O TN A
x Uar by Uy uy uu

In order to apply equations (1) and (2), it is necessary to express G in
terms of the independent thermodynamic parameters of the system.
For the description we choose the regular solution model with two
independent interaction coefficients e3; and g; for the two sublattices
(4, B) and (M, N), resp.l. The ideal case is then given by g3y = ¢; = 0.
With these assumptions, the integral free energy of the solid solution
system becomes

G = aulls, o, + yuGn, u, + w0Ch, v, + y00s, v, + G5,
(4)

Gmiz

T = (RTxy+xlnx+y111y)+so (RTuv—}—ulnu—}—vlnv)
with the derivatives

Gxx =RT7‘0 (~——2€M—{— }——{—1)
r oy

1 1
zax = RTro (_—:I:‘? -+ gz‘)
G’xzu = Guuz =0
Gou = AA Gy

1 1
Guu = RTsgy (—2Si+u+;)

1 1
Guuw = RBTsg (—172— + 1;2)'
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Since the mixed derivatives Gzzq and Gy, are zero, conditions (3 a) and
(3 b) for the critical point reduce to:

(Gxx)3 Guuu - szx (Ga;u)3
and
(Guu)3 Ga:xa: = Guuu (qu)?’-

Substitution of the derivatives of @ into the above expressions and
rearrangement of the terms results in the relations:

_ A3 3
o 507 z—y 1 1_2&;1&1}) _ AAGp
u—v] 22 y2uv RT RT
9 °— 1 2epxy 3 AA Gr\3
792 8o ——— 1 — = .
x—y| u2viay RT RT

Combining both equations and substituting the pseudobinary critical
temperatures for the interaction coefficients,

em =2 RTy; & =2RT,,

and further introducing the reduced temperatures

= T — T
T, = —_— T ==
T Ty TP Ta
we obtain the equation in its final form:
xy 4 xy\3 7] 4 uv\3
g ——— 1 ——=) =s8p—— |1 ——=] - 5
° (x_y)z( Tl) O(u"‘"))z( Ts ) ( )

Relation (5), together with the spinodal calculated from (1):

V(e oy
dxy ) \dww T, T
1

AAGf=4RT63V;(E), T3:T7
Tes

(6)

define the coordinates of the critical points of the regular double-pseudo-
binary solid solution (4zBy)r, (MulNp)s, at the temperature T.

For calculation purposes, but especially for carrying out small term
expansions for approximations, it is convenient to shift the origin of the
concentration coordinates to the center of the composition quadrangle.
We substitute:
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and conditional equations (5) and (6), rewritten in the new coordinates
s and f, become then:

1—4s2 1—42\3 1—412 1—412\3
ro [— 1——= =8 |——) [ ——=—
( §? Ty A T,
B N N W @
1—4s2 7 J\1—482 7, T

AN, BN
100 +

H [} @®
O [} je]

——= N- EXCHANGE, ATOMIC PERCENT —*
ny
[S]

0

0 20 40 60 80 100
AMz —— B -EXCHANGE, ATOMIC PERCENT —» BMz

Fig. 1. Plot of the function:

zy 4 zy\3 uw 4 uv\3
0 -——5 1'—‘? = 80— 5 1—"—:—~
°(w~y)2( Tl) °(u—v)2( Tg)

for different parameter values z = (:—0)
0

I1. Caleulation of the Coordinates of the Critical Points
and Approximate Solutions for the Binodal and Spinodal
near the Critical Solution Point
A. Ideal Boundary Systems

For this particular case we have

Toy =Ty =0and Tey = T.
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Fig. 2. Binodal and spinodal curves for the ideal symmetric, ro = so,
double-pseudobinary solid solution; {8} 7' = 0.90; (b) 7T = 0.64
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Because condition (7) does not contain any other variables but the
concentrations and the sublattice abundance factors sg and 7y, and can
be presented in the form

R (m, u, 8—) =0,
7o

the critical points are conveniently located graphically as the inter-
section points of parametric plots of condition (7), Fig. 1, with the

spinodal at the desired value of T. Since the shape of the spinodal

remains unaffected by the sublattice abundance factors and is roughly

circular at temperatures not too far from the critical solution point, the

principal effect of variations in z = 20 s a partial revolution of the
7o

binodal around the (fixed) binodal. This behavior is shown in graphs 2

through 4 for values of z of 1, 3, and 12. The spinodals for these examples

were calculated using equation (8), and the binodals from the relations?:

” ;

X x

u’ﬂu) f—‘*—ln-—,‘*, (9&)
( 4 V7'OSO Yy
. u” ’l},
;. ___1 e
o) =T ©ob)
” s T ! ,l;”
(x"u" —a'u') = Lree (7‘0 In y, +spln //) (9¢)

Examining the boundaries in Fig. 2 through 4, it will be noted that the
principal dimensions of the binodal near the critical solution point are
also largely unaffected by the choice of z and are roughly elliptical in
shape.

Solving equations (7) and (8) for ¢ and s yields the coordinates
of the critical points:

Ay —s) T _.e
82:27’0 (7‘0 So)T 1_]/1—_ 47‘0 (1 T) (10&)

879 7‘0—80 TZ—QTQ]z
et e ey ]
—_ _ 2 2
52:280 (80 To)T 1_V1_ 480 1 T) (10b)
8 50 [(s9 —70) T —25p]2

From a small term expansion of (10 a) and (10 b) for the vicinity of the
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critical solution point we immediately get the next lower approximation

2
sz=1( 0 )(1——T2)[1+(——+~) (1—T2)] (11a)

70 + So 8o
L[ % _ R N
12 = (’I‘() T 80) (1 T2) [1 + ( T 80) (1 TZ)] (11 b)

Table 1. Comparison between the Exact Location of the Critical Points (equa-
tion 10) and Coordinates Obtained from the Zeroth Order Approximation (12)

at T = 0.90
s (4) ¢ (F)
From From
& Exact Approx. (12) Exact Approx. (12)
2 0.132 0.126 0.180 0.178
3 0.115 0.109 0.190 0.189
12 0.066 0.063 0.210 0.209

or, discarding the first order temperature correction terms in the square
brackets, the zeroth order approximation:

1 7o
2 (r0+so)(1“T2) (122)
tZ:l_( 50 )(1_@2) (12D)
o -+ 8o

The agreement hbetween the exact coordinates of the critical points
calculated from relations (10) and those determined from the zeroth
order approximation (12) for 7' = 0.90 is quite good, as evidenced by the
data presented in Table 1. The slope of the critical tie lines, obtained as

Fig. 3. Binodal and spinodal curves for an ideal asymmetric double-pseu-
dobinary solid solution with

2= (sﬂ) =3 (@) T=090 (b) T =064
70
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slope of the binodal at the critical points, and the slope of the line
through both critical points (minor axis) are given by:

_{dt _(dv . To 1 {rp—sp —
S ‘(d‘s)p; (@)Pf—]/s:[‘ *E(mz) ‘“TZ’] (13)

.t /% 1 {rg—s9 s
S _§=V?E[1+2(Wﬁ) (1—T2)]. (14)

The first order temperature correction terms contained in the square
brackets of (13) and (14) are small at temperatures close to 7. and can be
neglected for approximate caleulations. We thus find the critical tie lines
to be roughly perpendicular to the line connecting the critical points.

From the binodal (9) we further obtain for the end points of the tie
line through the symmetry center s, ¢ (0,0) the approximations

/§ / -
o1~ + %l/ (ﬁ_sa) (1 —T?) (152)
~ EV' 7o 7
=T (m—sﬁ) (=7 (185)

and from these coordinates the slope of the major axis:

= |/ (16)
S1 So
In the limit, the major axis has thus the same slope as the critical tie
lines.

Table 2 gives a comparison between the exact values of the co-
ordinates and those calculated with the aid of approximations (15) for
z =2, 3, and 12. As can be seen from the data, agreement between the
exact and calculated values is not as good as in the approximation for the
critical points, but still satisfactory. In particular, equations (15)
predict major axes which are systematically too long and a closer
approximation would therefore have to include higher order terms in the
expansion of the equation for the binodal.

Fig. 4. Binodal and spinodal curves for an ideal asymmetric double-pseu-
dobinary solid solution with

2= (‘:-") ~12 (a) T =090 (b) 7 = 0.64
0
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From relations (12) and (15) we obtain for the dimensions of the
minor and major axis

o = (1—1T7)
dlznajor =3(1— le)
A nearly constant axes ratio of ~V§ is thus in agreement with the

qualitative inspection of the boundaries in Figs. (2 a), (3 a), and (4 a).

Table 2. Comparison between the Ezact Coordinates of the Tie Line through
s, ¢, (0.0) and Values Calculated from the Zeroth Approximation (15) at

T=0917,
81 (4) i1 (F)
From From
z Exact Approx. (15) Exact Approx. (15)
2 0.297 0.308 0.218 0.218
3 0.312 0.327 0.190 0.189
12 0.338 0.363 0.107 0.105

The approximate equations for the spinodal and binodal at temperatures
not too far from the critical solution point are then:

E2 g2 ﬁjj 1—172..... spinodal (17)
£ a1 T2 i
3 + 7 ::Z 1—-12..... binodal. (18)

The new rectangular coordinate system (£, v) is obtained by rotation of

the coordinate system (s, f) by an angle a given by tga = ‘/ﬁ Ap-
To

Fig. 5. Approximated (broken lines) binodals and spinodals of ideal double-
pseudobinary solid solutions at 7' = 0.90 T¢. Solid lines show exact bound-
aries. Approximate solutions:

Spinodal: £2 + 92 =L (1 T2
4 S0
tg == (/50
1 8 * To

i .8 2 > (1 — 72
Binodal: §+n 4(1 T2y

(@) z=1; (b) z—12



AN
100

£ )] [e 3
o [e] (o]

—— N- EXCHANGE, ATOMIC PERCENT -—*
N
o

% 20 a0 e 80 100

AM —— B-EXCHANGE, ATOMIC PERCENT —» BM
Fig. 5a

AN)> T=090Tc BNz

100 T T T T

£ [} @
(o] o o
T T T

N- EXCHANGE, ATOMIC PERCENT -—»

n
o
T

O ! L 1 i L 1 1
0 20 40 60 80 100

AM;,  —— B-EXCHANGE, ATOMIC PERCENT —» BM,»
Fig. 5b




1178 E. Rudy et al.: Boundary Phase Stability and Critical Phenomena

proximations calculated from (17) and (18) for two different ratios (@),
To
together with computer-calculated, exact, boundaries are depicted in

Figs. (b a) and (5 b).

B. Nonideal Boundary Systems

In view of the involved arithmetic, it proved impractical to carry the
approximations for the nonideal case beyond that of zeroth order; the
only exception being the slope of the ecritical tie lines, for which more
tractable expressions could be developed.

Approximate solution of equations (7) and (8) by small term expan-

sion (1 — T, s, t < 1) yields the coordinates of the critical points:

ol ro (1—T7")°

S TP e (T =730 —18H 1 —T3H] (19a)
1 s (1—T%)°
T4 gl —T7) s (1 —

2 TP [ —T301—T7Y (1 —TaH],  (19b)

from which we immediately obtain the slope of the line through the

critical points to:
— — 1\ 32
.
g=to /2= (20)
8 o \1 —T,

Small terms expansion and differentiation of the regular binodal? yields
for the slope at the critical point:

— — 1/2
. dt . do - o 1-—TIl
S—(a-;),,c = (aiz,)"]/* (:?F) a+& e

in which the first order correction term K is given by

[ro (1 —T7) — o0 (1 —05)°] [t — (1 —T7) (1 —T5) T3]

Kt
2 ro (1 —T11) + 80 (1 — T3)°

Yor 7171, To-l » 0,and T3 — T (ideal solution), expression (21) becomes

Fig. 6. Binodal and spinodal lines of a regular asymmetrie, double-pseu-
dobinary solid solution (z = 12), calculated with ¢, = — T, = T'¢,.

(8) T =0.90; (b) T = 0.64
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identical with (13). From the binodal we also calculate the slope of the
tie line through the symmetry center s, ¢ (0,0) to:

t1 7; 11 e
Sl _ = — — V==
S1 S0 1——T2

Comparison of (20), (21), and (22) reveals that, in the lowest order
approximation, the critical tie line is parallel to the tie line through
s, t (0,0), but that the principal axes are not perpendicular to each other
if T4 and T's ave dissimilar. The effect of nonideal behavior is shown on

particular model examples for 7' = 0.90 and.0.64 in Figs. 6a and 6b, which
were caleulated assuming regular solution behavior of the boundary
systems and critical temperatures of T'py = — T'¢, = T';. The critical
solution temperature, needed for the calenlation of the reduced tempera-
tures, was derived from the relation?,

Ty + Tey | 1
2 h §V(Tc1—“‘Tcz)2 + 4Tc§'

Tc———

Discussion

The foregoing thermodynamic treatment permits several generali-
zations concerning the phase equilibrium features of double-pseudo-
binary solid solufions:

First, we find that phase separation in solid solutions with ideal, or
weakly nonideal, boundary systems is principally controlled by the
stability of the boundary phases. Although the relative abundance of the
sublattices does affect critical solution temperature and orientation of
the binodal and tie lines, its influence on extent and shape of the mis-
cibility gap at equivalent temperatures is only minor. Unequal sub-
lattice abundance (rp # so) and nonideal sublattice solid solution
behavior causes a slanting of the tie lines in the direction of the boundary
systems with the higher sublattice weight factors and less positive
deviations from ideality, A point of practical interest concerns the
prediction that the mutual solubilities are higher in the less stable
boundary phase pair, and that the solubilities along the composition line
connecting' the higher stability boundary phase pair are expected to be

very small below T =0.5.

Although the conditional equations for the critical point derived in
Section I have general validity, the particular nonideal solution model
chosen for the description of the model examples has principal limitations:
An example is the breakdown of the model for AA Gy = 0, since under
these circumstances the critical solution temperature would be given by
either T, or T,, whichever is higher, and the solution at 7' would
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become critical along the entire concentration line = 1/2, or = 1/2.
For the thermodynamic description of double-pseudobinary solid
solutions with substantial, and dissimilar, nonideal behavior of the
boundary systems, a four-parameter? equation for the regular solution,

GMiT — gy uxy + eg vxy -+ €3 2UV + g4 Yyuv - Gmiz@deal)

should provide a more reasonable approximation of the actual conditions.
The interaction parameters g; can be estimated from the miscibility gaps
in the corresponding pseudobinary boundary systems, or from the
measured tie line distributions in pseudoternary systems with miscibility
gaps3.

While it will not prove difficult to assess the applicability of the
equations developed in this paper to solid solutions based on simple
ordered structures, careful consideration has to be given to cases where
intermixing occurs simultaneously on several non-equivalent crystal
sites ocenpied by the same set of components, say (4, B), or where the
occupational interchange between the two sublattices is substantial.
To exemplify the situation, we consider a solid solution

(AzBy)(M, N),

in which the components 4 and B are distributed among » nonequivalent
erystal sites: z; equivalent sites 1, zp sites 2, ... efe., with 3z = z.

n
Uniform distribution of 4 and B on the different sublattice sites will
only be assured if they are all energetically equivalent with respect to
occupation by A4 and B. If this is not the case, we have to consider the
formation of internal partition equilibria of the form

(Az'By')ey — (A2’ By")zg — « - -

and analyze the composition of each sublattice in order to be able to
describe the integral free energy of the system. At least in principle,
coexisting sublattice compositions (tie lines of the homogeneous partition
equilibrinm) can be determined by diffraction techniques and thermo-
dynamieally evaluated using essentially the same methods as for hetero-
geneous phase equilibria®. For the limiting case of large energy separations
{strongly preferential occupation of the sublattice sites), the system is
divided into » subsystems, e.g.

(Aa By)ay Azgs Asy ... Az (M, N) 0<ys< %1
21 21 -+ %2
le (Axv Bf’/")ZZ Azz ... Azn (M, N) ; £¥Yr < ———z—— ... etc.

each of which may have a critical point and closed loop binodals.
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